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‘‘Chirped’’ Van der Pol oscillator
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~Received 10 March 1997!

A frequency ‘‘chirp’’ can destroy the limit cycle of the Van der Pol oscillator. Simple criteria for the
preservation of the limit cycle despite the chirp are found analytically and verified numerically in the cases of
a weak and strong nonlinearity.@S1063-651X~97!06007-8#

PACS number~s!: 03.201i, 46.10.1z, 84.30.Ng
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Dynamics of physical systems, the parameters of wh
slowly ~adiabatically! vary in time, have always attracte
attention. The adiabatic invariant@1# that exists in the prob-
lem of a ~linear or nonlinear! frictionless oscillator, with a
time-dependent frequency, is the best known elementary
ample. More intricate are examples from the nonintegra
Hamiltonian dynamics. We can mention here the problem
an adiabatic invariant in the chaotic systems with slow
time-dependent parameters@2# and the problem of the
‘‘slowly varying chaos’’ in the systems where both fast a
slow time dependences are present@3#.

An open question concerns the dynamics of nonlineardis-
sipativesystems with slowly varying parameters. One of t
simplest examples of such a system is a natural extensio
the famous Van der Pol~VdP! oscillator. The VdP oscillator
introduced in 1920 as a simple model of a vacuum-tu
based signal generating circuit@4#, is regarded as a standa
model of a periodic self-oscillatory~limit-cycle! behavior
@5–8#. Examples of systems describable, within an appro
mation, by the VdP-oscillator model can be found in ma
fields of physics. For example, they include the class
Froude pendulum@5# ~a mechanical pendulum coupled b
friction to a rotating shaft, around which it can oscillate!.
Another well-known example is the tunnel diode genera
of periodic signals@7# that employs the ‘‘negative resis
tance’’ property of tunnel diodes@9#.

The dynamics of VdP oscillators are controlled by para
eters that determine the basic oscillation frequency and
gree of nonlinear friction. If these are constant, the lim
cycle of a VdP oscillator is unique. In some application
these parameters can vary in time~for example, the fre-
quency can be ‘‘chirped’’!. Therefore, a question arises o
how these time variations affect the dynamics. Will the lim
cycle persist, and if so, under what conditions? In this pa
we will answer this question by considering the VdP eq
tion with a time-dependent frequencyv(t)

ẍ1e~x221!ẋ1v2~ t !x50 , ~1!

where e.0 is the nonlinearity degree. We will conside
separately the cases of a small and largee, extend the cor-
responding perturbation techniques to the case of a chi
frequency, and compare the results with numerical solutio

Let us start with the case of a weak nonlinear
e!v(t) and introduce a~constant! characteristic frequency
v0. It is convenient to work with a scaled timet85v0t,
frequency v(t8)5v(t)/v0, and nonlinearity degree
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e85e/v0. With the scaled quantities, the VdP equation c
incides with Eq.~1! with the coefficiente8!1 instead ofe.
We will omit the primes and regarde as a small parameter
We also require the adiabaticity conditionuv22dv/dtu!1
and look for the solution in the form
x(t)5a(t)cos@*0

tv(t8)dt81f(t)#, wheref(t) is a slow vary-
ing phase. Employing the standard method of averag
@5–7#, we arrive at the following reduced equations:

ȧ5
ea

2 S 12
a2

4 D2
v̇a

2v
, ḟ50 ~2!

so that f(t)5f(0)5const. One can see that
v(t)5const, Eq.~2! reduces to the well-known amplitud
equation for the stable limit cycle of the VdP oscillat
@4–7#. On the other hand, in the conservative case,e50, Eq.
~2! describes the preservation of the adiabatic invari
I5(1/2)v(t)a2.

It turns out that Eq.~2! is solvable analytically. Indeed
we introduce a new variableu5I2152v(t)21a22. Then
Eq. ~2! becomes linear,

u̇1eu5
e

2v~ t !
, ~3!

and can be readily integrated. Returning to the original va
ablea(t), we obtain

a~ t !5F 2

v~ t !G
1/2F 2 e2et

v~0!a2~0!
1

e

2
e2etE

0

teet8dt8

v~ t8! G21/2

, ~4!

wherea(0) andv(0) are the initial values of the amplitud
and frequency, respectively.

The result~4! will obviously depend on the specific form
of the functionv(t). However, some simple and gener
conclusions about the long time behavior of the system
be drawn immediately. They can be conveniently summ
rized as the following two theorems~sufficient conditions!.

Theorem 1.For e!v(t), if there exists a positivea such
that at any timet.0

1

v

dv

dt
,a,e, ~5!

then any trajectory of the dynamic system~2! @except
a(0)50# approaches a limit cycle with the amplitude
256 © 1997 The American Physical Society
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56 257‘‘CHIRPED’’ VAN DER POL OSCILLATOR
a~ t→`!.2~12a/e!1/2. ~6!

Proof. First, we integrate both sides of the left inequal
of Eq. ~5! from zero to t and obtainv(t)/v(0),eat. We
multiply both parts of this inequality bye2et, take the limit
of t→` and, using the right inequality of Eq.~5!, obtain

lim
t→`

v~ t !

v~0!
e2et50 . ~7!

Next consider the integral

E
0

teet8dt8

v~ t8!
5
1

e
F eet8

v~ t !
2

1

v~0!
G1

1

eE0
t eet8

v2~ t !

dv

dt8
dt8. ~8!

Using the left inequality of Eq.~5! in the second term on th
right-hand side and rearranging the terms, we arrive at

E
0

teet8dt8

v~ t8!
,

1

e2aF eet

v~ t !
2

1

v~0!G . ~9!

We use this inequality in Eq.~4! to obtain

a~ t !.21/2H F 2

a2~0!
2

e

2~e2a!G v~ t !

v~0!
e2et1

e

2~e2a!J 21/2

.

~10!

Taking the limit oft→` on both sides and using Eq.~7!, we
obtain the required inequality~6!.

Theorem 2.For e!v(t), if there existsa such that at any
time t.0

e,a,
1

v

dv

dt
, ~11!

then the amplitudea(t) will approach zero~no limit cycle!

a~ t→`!50 . ~12!

Proof. First, it is easy to prove that

lim
t→`

v~ t !

v~0!
e2et5`. ~13!

Also, one can show that

E
0

teet8dt8

v~ t8!
.

1

e2aF eet

v~ t !
2

1

v~0!G . ~14!

Using this inequality in Eq.~4! and going to the limit of
t→` one obtains, in view of Eq.~13!, the result~12!.

In simple words, Theorems 1 and 2 say that if the f
quencyv(t) is varying slowly enough, the~slowly varying!
stable limit cycle persists. On the contrary, too rapid a f
quency chirp can destroy the limit cycle.

In order to verify the analytical result~4! and predictions
of Theorems 1 and 2, we solved Eq.~1! numerically for
different values of parameters. Two representative exam
of these computations are shown in Fig. 1. The chirped
quency wasv(t)510eat. In this case the perturbation theo
predicts that, fora,e the limit cycle persists, while its am
-

-

es
-

plitudea is constant and equal to 2 (12a/e)1/2. On the con-
trary, for a.e the limit cycle is destroyed, and
a(t→`)50. We took the nonlinearity degreee51.0. ~We
have returned to the original variables. In the scaled variab
e850.1.! Figure 1~a! corresponds to two different initial con
ditions fora50.5. It is seen thata→A2 as predicted. Figure
1~b! refers to the case ofa55.0. One can see thata→0 as
predicted. In Fig. 1~a! the predicted amplitude dynamics@Eq.
~4!# agrees very well with the computed one. The agreem
is less good in Fig. 1~b! because the adiabaticity conditio
uv22dv/dtu!1 is not satisfied at early times.

Now let us return to the original Eq.~1! and consider the
opposite case of a very strong nonlinearity,e@v(t). Follow-
ing the standard technique of the slow and fast motions
relaxation oscillations@5,7#, we introduce a slow time
t85t/e and auxiliary variablez5x2x3/32e22dx/dt8. Now
Eq. ~1! can be rewritten as a set of two first order equatio

dz

dt8
5v2~et8!x, ~15!

e22
dx

dt8
5x2

x3

3
2z. ~16!

One can see that the ‘‘fast’’ equation~16! coincides with that
for the VdP oscillator with a constant frequency. Corr
spondingly, the phase planez,x of the system looks similar
to the constant frequency case~Fig. 2!. For not too large a
frequencyv(et8), a generic phase point~for example, point
E in Fig. 2! moves very fast~almost vertically! towards one
of the two stable branches of the slow motion cur
x2x3/32z50. Then it moves slowly along the curve, a
described by Eq.~15!, until it reaches one of the extremum
points, (23,1) or (2

2
3,21). Here it ‘‘jumps’’ almost vertically

FIG. 1. The VdP-oscillator amplitude vs time as predicted
the analytical expression~4! and numerical solution for differen
initial conditions. Parametere51.0, whilea50.5 ~a! and 5.0~b!.
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to the other stable branch of the slow motion curve, the m
tion along the curve continues and so on. The slow mot
equation~15!, however, is significantly different from that i
the constant frequency case. In particular, it is clear tha
v(et8) goes to zero too fast, the motion along the slow cu
will stop and, correspondingly, the limit cycle will cease
exist. To check this quantitatively, let us estimate the ti
T(n) it takes the phase point to completen cycles. Using
Eqs.~15! and ~16! we have

dt85
dz

v2~et8!x
.
d~x2x3/3!

v2~et8!x
. ~17!

It is convenient to calculate*0
t v2(et8)dt8. For simplicity,

we consider the phase point that starts from pointA ~see Fig.
2!, and neglect the time needed to traverse the fast, alm
vertical segments of the trajectory. Using Eq.~17! we obtain

E
0

T~n!

v2~et8!dt85n~322 ln2! ~18!

~we used the fact thatxA52 andxB51). This equation has a
solutionT(n) for everyn.0 if and only if

E
0

`

v2~ t !dt51`. ~19!

Therefore, we have proved the following
Theorem 3.For e@v(t), the~time-dependent! limit cycle

persists for allt.0, if and only if criterion~19! is satisfied.
Otherwise,x(t) approaches a constant value.

FIG. 2. Phase planez,x of a highly nonlinear VdP oscillator
with a time-dependent frequency.
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We verified this prediction by numerically solving Eq.~1!
for e@v(t) and different forms ofv(t). Figure 3 shows two
typical results of such calculations. We chosee510.0 and
started from the same initial conditionsx(0)52.0 and

ẋ(0)50. The time dependence of the frequency w
v(et8)5(11t8)2b, and we varied the parameterb. Figure
3~a! corresponds to the case ofb51/4 when criterion~19! is
satisfied. One can see that the~time-dependent! limit cycle
persists. On the contrary, in the case ofb53/4, shown in
Fig. 3~b!, the integral entering criterion~19! is equal to
2.0,1`. One can see that, after a transient,x(t8) ap-
proaches a constant value, as predicted by Theorem 3.

In summary, we have considered a ‘‘chirped’’ VdP osc
lator and found, separately in the weakly and strongly n
linear cases, simple criteria for the persistence of the lim
cycle-type behavior. These criteria and other predictions
the theory agree well with numerical computations. Natu
next questions concern the role of slow parameter variati
in discrete self-oscillating systems with a higher dimens
~like the Lorenz system@10#!, and in continuous self-
oscillating systems.

FIG. 3. The dependencex5x(t8) found numerically for a
highly nonlinear VdP oscillator with a time-dependent frequen
Parameterb51/4 ~a! and 3/4~b!.
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