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“Chirped” Van der Pol oscillator
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A frequency “chirp” can destroy the limit cycle of the Van der Pol oscillator. Simple criteria for the
preservation of the limit cycle despite the chirp are found analytically and verified numerically in the cases of
a weak and strong nonlinearity51063-651X97)06007-9

PACS numbdrs): 03.20+i, 46.10+z, 84.30.Ng

Dynamics of physical systems, the parameters of whicke’ = e/ wy. With the scaled gquantities, the VdP equation co-
slowly (adiabatically vary in time, have always attracted incides with Eq.(1) with the coefficiente’ <1 instead ofe.
attention. The adiabatic invariafit] that exists in the prob- We will omit the primes and regare as a small parameter.
lem of a(linear or nonlinear frictionless oscillator, with a We also require the adiabaticity conditiom ~*dw/dt|<1
time-dependent frequency, is the best known elementary exand look for the solution in the form
ample. More intricate are examples from the nonintegrable(t) = a(t)cog [Lw(t')dt' + ¢(t)], where ¢(t) is a slow vary-
Hamiltonian dynamics. We can mention here the problem ofng phase. Employing the standard method of averaging
an adiabatic invariant in the chaotic systems with slowly[5—7] we arrive at the following reduced equations:
time-dependent parametef&] and the problem of the
“slowly varying chaos” in the systems where both fast and . ea
slow time dependences are presi8it a=—

An open question concerns the dynamics of nonlirtisr
sipativesystems with slowly varying parameters. One of thes that ¢(t)=h(0)=const. One can see that if
simplest examples of such a system is a natural ex_tension C(Jf(t)zconst, Eq.(2) reduces to the well-known amplitude
Fhe famous _Van der PavdP) _oscnlator. The VdP oscillator, equation for the stable limit cycle of the VdP oscillator
introduced in 1920 as a simple model of a vacuum-tub

based si I i T ded tand def4—7]. On the other hand, in the conservative case(, Eq.
ased signal generating C'rcm]' IS régarced as a stanadar (2) describes the preservation of the adiabatic invariant
model of a periodic self-oscillatorylimit-cycle) behavior

: ) 1=(1/12)w(t)a2.
E_t?].nE)t()an:r? Ie%g;systﬁlmts rd?nsctglblabli, g\/'trf"n r?g i?]prﬁ’qm;(" It turns out that Eq(2) is solvable analytically. Indeed,
aton, by the ~osciiator moce! can be fou aNYwve introduce a new variable=1"1=2w(t) *a 2. Then

fields of physics. For example, they include the classica .
Froude penduluni5] (a mechanical pendulum coupled by a. (2) becomes linear,
friction to a rotating shaft, around which it can oscillate _
Another well-known example is the tunnel diode generator u+eu
of periodic signals[7] that employs the “negative resis-
tance” property of tunnel diodd®]. - . - :
The gyngmi)és of VAP oscillzio;s are controlled by param-and can be readlly integrated. Returning to the original vari-
eters that determine the basic oscillation frequency and deqblea(t), we obtain

2\ wa .
_Z! ¢_0 (2)

a

4

€

= 20D’ (3

gree of nonlinear friction. If these are constant, the limit 11 et o112

. . . . 2 2e ¢ I3 te€ dt
cycle of a VdP oscillator is unique. In some applications, a(t)= e (4
these parameters can vary in tinfler example, the fre- o(t)] |«(0)a%(0) 2 o o(t")

qguency can be “chirped). Therefore, a question arises on

how these time variations affect the dynamics. Will the limit wherea(0) andw(0) are the initial values of the amplitude
cycle persist, and if so, under what conditions? In this papeand frequency, respectively.

we will answer this question by considering the VdP equa- The result(4) will obviously depend on the specific form

tion with a time-dependent frequenay(t) of the function w(t). However, some simple and general
conclusions about the long time behavior of the system can
X+ e(x2—1)x+ w?(t)x=0, ) be drawn immediately. They can be conveniently summa-

rized as the following two theorensufficient conditions

where €>0 is the nonlinearity degree. We will consider ~ Theorem 1For e<w(t), if there exists a positiver such
separately the cases of a small and laegextend the cor- that at any time>0
responding perturbation techniques to the case of a chirped
frequency, and compare the results with numerical solutions. 1 dw< < 5

Let us start with the case of a weak nonlinearity wdt “TF ©
e<w(t) and introduce dconstant characteristic frequency
wg. It is convenient to work with a scaled timeé=wyt, then any trajectory of the dynamic syste(@) [except

frequency w(t')=w(t)/wg, and nonlinearity degree a(0)=0] approaches a limit cycle with the amplitude
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“CHIRPED” VAN DER

a(t—o)>2(1—ale)? (6)

Proof. First, we integrate both sides of the left inequality
of Eq. (5) from zero tot and obtainw(t)/w(0)<e*. We
multiply both parts of this inequality bg ™ ¢, take the limit
of t— and, using the right inequality of E¢5), obtain

w(t)

lim———e ¢=0. 7

Next consider the integral
Jte“’dt’ 1] e 1 Jr1Jt e<t’ dwd ' (@
o) o) w0 elowinardts @

Using the left inequality of Eq(5) in the second term on the
right-hand side and rearranging the terms, we arrive at

e'dt! 1 [ e 1
Jow calad w0 ©
We use this inequality in Eq4) to obtain
€ w(t) . € -1z
a(t)>21/2[ 20 2e—a)|o(®® 2(6—a)] :
(10

Taking the limit oft—c on both sides and using E(), we
obtain the required inequaliti6).

Theorem 2For e<w(t), if there existsa such that at any
timet>0

1dow
e<a<—

o dt’ (11)

then the amplituda(t) will approach zerano limit cycle)

a(t—«)=0. 12
Proof. First, it is easy to prove that
tlm;%e‘fE (13
Also, one can show that
e’dt! 1 [et 1
Joawr =m0 (19

Using this inequality in Eq(4) and going to the limit of
t—oo one obtains, in view of Eq.13), the result(12).

In simple words, Theorems 1 and 2 say that if the fre-

guencyw(t) is varying slowly enough, théslowly varying
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FIG. 1. The VdP-oscillator amplitude vs time as predicted by
the analytical expressiof¥) and numerical solution for different
initial conditions. Parametesr= 1.0, while«=0.5 (a) and 5.0(b).

plitudea is constant and equal to 2 {1a/ €)% On the con-
trary, for a>e the Ilimit cycle is destroyed, and
a(t—>)=0. We took the nonlinearity degree=1.0. (We
have returned to the original variables. In the scaled variables
€' =0.1) Figure 1a) corresponds to two different initial con-
ditions fora=0.5. It is seen thaa— /2 as predicted. Figure
1(b) refers to the case af=5.0. One can see that—0 as
predicted. In Fig. (a) the predicted amplitude dynamif&q.
(4)] agrees very well with the computed one. The agreement
is less good in Fig. (b) because the adiabaticity condition
|w 2dw/dt|<1 is not satisfied at early times.

Now let us return to the original E¢l) and consider the
opposite case of a very strong nonlinear#s; o(t). Follow-
ing the standard technique of the slow and fast motions in
relaxation oscillations[5,7], we introduce a slow time
t'=t/e and auxiliary variable=x—x3/3— e~ 2dx/dt’. Now
Eq. (1) can be rewritten as a set of two first order equations

— =w?(et')X,

dt/ - (15)

3
_, dx X

7 =X— 5 —Z

at 3 (16)

€

One can see that the “fast” equatidh6) coincides with that
for the VdP oscillator with a constant frequency. Corre-

stable limit cycle persists. On the contrary, too rapid a fre-spondingly, the phase plazex of the system looks similar

guency chirp can destroy the limit cycle.
In order to verify the analytical resu{#t) and predictions
of Theorems 1 and 2, we solved E() numerically for

to the constant frequency cafieig. 2). For not too large a
frequencyw(et’), a generic phase poilftor example, point
E in Fig. 2 moves very fastalmost vertically towards one

different values of parameters. Two representative examplesf the two stable branches of the slow motion curve
of these computations are shown in Fig. 1. The chirped frex—x3/3—z=0. Then it moves slowly along the curve, as
quency waso(t) =10e®'. In this case the perturbation theory described by Eq(15), until it reaches one of the extremum

predicts that, fore< e the limit cycle persists, while its am- points, ,1) or (—%,—1). Here it “jumps” almost vertically
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FIG. 2. Phase plane,x of a highly nonlinear VdP oscillator 0;'
with a time-dependent frequency. o | .
054 no 20 30 40 50
to the other stable branch of the slow motion curve, the mo- A #
tion along the curve continues and so on. The slow motion 1.5 4
2 4

equation(15), however, is significantly different from that in

the constant frequency case. In particular, it is clear that if

(b)

w(et') goes to zero too fast, the motion along the slow curve

will stop and, correspondingly, the limit cycle will cease to
exist. To check this quantitatively, let us estimate the tim

T(n) it takes the phase point to completecycles. Using
Egs.(15) and(16) we have
dz d(x—x%/3)

= 2 et %~ w2(etx

17

It is convenient to calculatéw?(et’)dt’. For simplicity,
we consider the phase point that starts from pairisee Fig.

2), and neglect the time needed to traverse the fast, almo

vertical segments of the trajectory. Using Efj7) we obtain
T(n)
f w’(et’)dt’=n(3—21n2) (18
0

(we used the fact thaty =2 andxg=1). This equation has a
solutionT(n) for everyn>0 if and only if

fmwz(t)dt=+oo.

0

(19

Therefore, we have proved the following

Theorem 3For > w(t), the (time-dependentimit cycle
persists for alt>0, if and only if criterion(19) is satisfied.
Otherwise x(t) approaches a constant value.

€

FIG. 3. The dependencg=x(t') found numerically for a
highly nonlinear VdP oscillator with a time-dependent frequency.
ParameteB=1/4 (a) and 3/4(b).

We verified this prediction by numerically solving EQ)
for e w(t) and different forms ofw(t). Figure 3 shows two
typical results of such calculations. We chase 10.0 and
started from the same initial conditions(0)=2.0 and

x(0)=0. The time dependence of the frequency was
(et’)=(1+t')"#, and we varied the parametgt Figure
é%(a) corresponds to the case Bt 1/4 when criterion(19) is
satisfied. One can see that tftene-dependentlimit cycle
persists. On the contrary, in the case®# 3/4, shown in
Fig. 3b), the integral entering criteriof19) is equal to
2.0<+0o, One can see that, after a transier{t’) ap-
proaches a constant value, as predicted by Theorem 3.

In summary, we have considered a “chirped” VdP oscil-
lator and found, separately in the weakly and strongly non-
linear cases, simple criteria for the persistence of the limit-
cycle-type behavior. These criteria and other predictions of
the theory agree well with numerical computations. Natural
next questions concern the role of slow parameter variations
in discrete self-oscillating systems with a higher dimension
(like the Lorenz system{10]), and in continuous self-
oscillating systems.
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